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I. Phys. A: Math. Gen. 27 (1994) 1045-1055. Printed in the UK 

Two electrons in a homogeneous magnetic field: particular 
analytical solutions 

t Laboratory of Atomic and Solid State Physics, Cornell University. Ithaca, NY 14853-2501, 
USA 

Received 2 Angust 1993 

Abstract Particular analyiical solutions of the two-dimensional Schrodinger equation are 
described for two electrons (interacting with Coulomb potentials) in a homogeneous magnetic 
field B and an external oscillator potential with frequency q. These exact solutions occur 
at an infinite and countable set of values of the quantity iu = Jm. Additionally, 
approximate closed-form solutions for the limits of small 3 (perturbation theory in the electron- 
electron interaction) and large 5 (harmonic approximation) arc discussed and compared with the 
exact solutions. 

1. Introduction 

The solution of the twodimensional Schrodinger equation for one electron in a homogeneous 
magnetic field B has been known already since the 20's [I]. An additional external oscillator 
potential does not produce significant complications. It is shown here, that for hvo electrons 
(interacting via Coulomb interaction) there are analytical solutions as well, provided the 
effective oscillator frequency i, = OJ; + w t  belongs to a certain denumerably 'infinite 
set of values. Here WO is the frequency of an admissible external oscillator potential, 
0,. = $uE = i B / c  is the tarmor frequency, wc the cyclotron frequency, and c is the 
velocity of lights. This means that for a given 00 there are analytical solutions for a certain 
set of magnetic fields and vice versa. The sequence of admissible 5 starts with a finite 
value of order 1 (depending on the angular momentum and the degree of excitation) and 
converges to zero. Thus the range of small and B is covered particularly densely with 
solutions. Our method applies to singlet and triplet as well as to ground and excited states. 
An application of the underlying basic idea applied to the three-dimensional case  without 
magnetic field is given in [Z] and a numerical solution of the present problem is described 
in [3]. 

Possible applications of our solutions comprise the two-electron quantum dot and pairing 
problems of the two-dimensional electron gas in a magnetic field. It should also be useful 
for checking and assessing numerical and approximate methods for the two-dimensional 
electron gas with Coulomb correlations in a magnetic field. 

1 Resent address: Technische Univmit?il Cottbus, Institul fir Physik. 03013 Cottbus, Federal Republic of 
Germany. 
5 The c w s t e m  and atamic units R = m = e  = 1 are used. 
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2. Exact solution 

2.1. Decoupling 

For the sake of a self-contained description, the decoupling of the Schrodinger equation into 
five easily solvable and one remaining equation of the type of a radial Schrddinger equation 
will be brieffy reviewed (see also [3]). (It should be mentioned that, unless otherwise stated, 
this procedure applies to any gauge and dimension.) The Hamiltonian for the system in 
question reads 

where Hspin = g(s1 + sz) . B. Now we introduce relative and centre-of-mass coordinates 

T = TZ - T I  R = l ( q  + rz) (2) 

p = - v  . 9 - - z @ Z - P l )  -1 P=TVR=PIfpz.  

which give rise to the definition of new momentum operators 

(3) 
1 1 
1 1 

If B is constant, A must be a linear function and we have 

d ( T )  = A(Tz) -  TI) A(R) = $[A(TI) + A(Tz)]. (4) 
In these coordinates, (1) reads 

= 2Hr + ~ H R  + Hspin (5) 
where, for convenience, new parameters are defined iis follows: OR = %,or = 4 9 ,  
AR = 2A(R), and A, = ~ A ( T ) .  The special form of (5) allows a product ansatz for the 
eigenfunction 

(6) 

(7) 

Y = V(T) . B(R) . x (SI, SZ) 

and the eigenvalues have the form 

E = 2Er  + ~ V R  + Eapin 
where and V R  are the eigenvalues of the operators H, and H R ,  respectively. The 
Pauliprinciple demands that if V ( T )  is symmetric (antisymmetric) with respect to inversion 
T -+ -T, then x must be the singlet (triplet) spin state. No restrictions on t(R) are imposed. 

The eigensolutions of Ha are identical with those of a one-particle problem with 
modified parameters. For the sake of completeness and further reference, they will be given 
here (for derivation see [l]). From now on we restrict ourselves to the two-dimensional 
case, the gauge A = i(B x T) with B perpendicular to the plane, and polar coordinates 
(r.  01): 

e M N ( ~ )  eiMmLjvMl(&R$) (8) 

(9) 
B 

?MN = (2N + 1 + IM1)GR f M; 

where L y '  are associated Laguerre polynomials, N = 0,1,2,. . . , M = 0, fl, f 2 , .  . . is 
the angular momentum quantum number, and GR = 22. 
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2.2. htemul motion 
v i e  Schrodinger equation H,p(r) = E ~ ~ ( T )  reads under the conditions specified above: 

which justifies the ansatz 
eima u(r) p = -- 6 r 1 / 2  

. m  = 0, f l ,  f 2 , .  . . . 
Here u(r )  must satisfy the radial Schrodinger equation 

where (5, = $5 and the solution is subject to the normalization condition 1; drlu(r)12 = 1. 
Equation (12) is similar to that occurring in the three-dimensional problem without magnetic 
field (see equation (9) in [Z]). We can therefore apply the same method, which will be 
summarized shortly. Substitute p = f i r  as well as 

(13b) 
I ?  u ( p )  = e-rP t ( p )  

t ( p )  = plml+i x a v p u  (134 
. ,  03 

"=O 

into (12) and obtain the following recurrence relation for the coefficients a,: 

and for U 2 2 

This relation allows us to express any coefficient in the form 

Normalizability of the wavefunction can be. reached by termination of the power series at 
U = n. The conditions a,, = 0 and a,+l = 0 ,are fulfilled if 

(16) 

a, = F(lml, U, E", (5,)m. (15) 

F(lml,n, E", (3,) = 0 
and 

Both equations determine the specmm of the allowed Ui, and E ~ .  We proceed as follows. 
Once F(lm1, n, E", GP) is calculated~for a particular n, we insert (17) into (16) and have an 
equation which determines Gr. For those (5, we obtain the energies from (13a) and (17) 

E" = 2(lml+ n ) .  (17) 

(18) E ,  = pr%" 1 "  + ?moL I = (Iml+ n)&, + i m q . .  
It is important that the solutions found in this way are not necessarily ground states. In the 
case that (16) and (17) have more than one solution for (5,, the solution with the smaller 
Gr has zero nodes (ground state), that with the second largest (j, has one node (first excited 
state), etc. 
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2.3. Results 

The simplest solutions (first-order polynomials) are generated by n = 2. The corresponding 
F reads as 

1 F(lml, n = 2, E", C) = - + 2(lml+ 1) - E" 

and (16) and (17) give the spectrum 

( 3 -  1 
' - 2(2Iml + 1) 

+ fmmL. E -  Iml + 2  
r - 2(21ml+ l )  

Inserting this into (13) provides us with the (unnormalized) radial wavefunction 

Analogously we obtain for n = 3. 

All states given above are ground states. A plot of some of these and some other eigenvalues 
is shown in figure 1 and ground-state solutions of the radial Schrodinger equation for some 
exactly soluble (3, appear in figure 2. Observe that the radial function 'u(r) contains all the 
information about the pair correlation function G ( r )  = [@I S!ri - ~j - r)l@) thanks 
to the relation 

As follows from figure 2, both electrons prefer for small (3, a certain distance, namely 
the classical distance ro defined below in (25). In figure 3 the electron density 
n(r) = ($1 xi S(r - ri)l$) for some Gr is shown. For large Gr (what is  equivalent to 
saying large maximum electron density) the electrons are located mainly around the origin 
in qualitative agreement with the behaviour of one electron. For small (3,. however, they 
arrange themselves on a ring with diameter ro. Because their mutual distance approaches 
also the value ro (see figure 2), in this way they are maximizing their distance on the 
ring occupying antipodal positions. Thus they exhibit strongly correlated behaviour as to be 
expected in this limit. (See also the discussion by Laughlin [4] in the limit of high magnetic 
fields.) 
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Figure 1. Some eigenvalues (E, -~fmw) for (a) m = 0 and (b) m = 1 vmus l/&. Crosses 
are~exact solutions and full curves are approximate solutions for small 5, (28). The broken 
curve is the ground state in the limit of large 6, (21). The numben in parentheses U) the right 
of the crosses a ~ e  the termination index n and the number of zeros of the corresponding solution. 
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1 " " I " " l " " -  
%*u(r/ro) for  m=O n=2,10,30 . 

> /  . .  . .  1 

0 1 2 3 4 
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Figure 2. Radial part u(r) of the ground stale for m = 0 and n = 2. IO, 30, corresponding 
Lo 116, = 2904.617, and 29312.4, respectively. rg is the classical electron4ectr.m distance 
defined in (25). 

3. Approximate solution for the relative motion 

Despite the availability of particular exact solutions, the search for approximate solutions is 
justified for two reasons: firstly, they provide simple closed form solutions for any WO and B ,  
the applicability and accuracy of which can be checked by means of the exact solution given 
in section 3. Secondly, they can be applied to any elechon number, where exact analytical 
solutions are not available and exact numerical solutions are practically not feasible. 

3.1. High Gr 

In this limit we can consider the electron-elechon interaction in first-order perturbation 
theory. For the ground state of a given angular momentum m, one obtains (see [3]) 

The first two terms are the energies of non-interacting electrons and the thud term originates 
in the electron-electron interaction. As seen in figure 1, this approximation fails for small 
G,, in particular form = 0. In the range of intermediate Gp (& - 1) it has the same accuracy 
as the result in the other limit (see section 3.2). Unfortunately, our method doesn't allow 
us to check (21) for large Gr, because it does not provide exact solutions in this limit, 
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Figure 3. UeceOn density n(r)  corresponding to the solutions shown in figure 2. 

3.2. Small Or 

The radial Schrodinger equation (12) can be written as 

with the effective potential 

For small O,, (22) can be solved approximately by expanding Ve&) around its (local) 
minimum r,, determined by d/drVe&)[,=Fm = 0, giviag rise to the equation 

4 ’  1 r,  - -=-r - - (m2- $) = 0. 
26l: O; 

For small 0,, the third term of (24) can be neglected and the solution for (24) is then 

(25) 

Physically speaking, ro is the distance of two electrons in the ground state of OUT system 
in the classical limit. Obviously, ro + 03 as CS, + 0, and r;’ can be treated as a small 

ro = (z$)-~’~ = ( p  1 - 2  ) -1P . 
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Table 1. 
eigenvalues (E, - I m q )  for n = 2-20 for m = 0. N, is lhe number of nodes of ti@). 

All solutions for fhe effective oscillator frequencies & and the corresponding 

n I /& S, N, 
2 0.2000WEt01 0.10OOOOE+O1 0 
3 0.120000E~02 0.250000E-00 0 
4 0.370880E1M 0.107 852E-00 0 

0.291 199Et01 0 137363Ei01 I 
5 0.844674E-02 0.591944E-01 0 

0.155326E+02 0.321 903Ec00 I 
6 0.161 ?53Et03 0.372OsSE-01 0 

0.450281E42 0.133250E+00 I 
0.371 853E+O1 0.161 354EtOl 2 

7 0.274552EtO3 0.254961E-01 0 
0.987004E+02 0.709217E-01 I 
0.187477E+02 0.373 379EtOO 2 

8 0.431472E103 0.185412E-01 0 
0.183 686E43 0.435 527E-01 I 
0.523811EtO2 0.152727EtOO 2 
0.446155Ei01 0.17931OEtO1 3 

9 0.639 123E43 0.140818E-01 0 
0.307090E103 0293 074E-01 I 
O.I12038E+O3 0.803.299E-01 2 
0.217493Et02 0.413807E+OO 3 
0.174921EtO4 0.800359E-CQ 1 
0.105055E~04 0.133263E-01 2 
0.559693E-03 0.250 137E-01 3 
0.W4586E-03 0.572396E-01 4 
0.722529Ed2 0.1937ME-W 5 
0.646710E+01 0.216480E-01 6 

15 0.334860E44 0.417948E-02 0 
0.225244EtM 0.665946E-07. I 
O.I41609E+M 0.105926E-01 2 
0.80dOSIEX)3 0.185632E-01 3 
0.396399EX13 0 378406E-01 4 
0 148483Et03 0.101022E~OO 5 
0.299411EtO2 O.SW983E-00 6 

parameter. We find an improved solution of (2) by insening the ansatz r, = ro + 6r = 
ro(1 iGr /ro)  and keeping linear terms in the correction Grjro. In this way we obtain 

(26) r, = ro T ; (m2 - 4) + O(r;') .  

With this approximate r,, the harmonic approximation for Vcr reads 

(27) 2 ver(r) = V, + +:(r - rm) 

where 

V, = $-if [ 1 + ?(m2 - $)r;' + ~ ( r ; ~ ) ]  
2, = &ro 3 -312 [ I  + f(m2 - a)r; l+ 0 ( r c 2 ) ]  

and the approximate eigenvalue spectrum of (22) is 

E, = ~ , + & ( n , + i ) T ~ m o ~  I = [~~~'3+~~,(nw+t)][~+f~~'3(mZ-,I)]+jmwL 
(28) 
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N, 
2 0.600000E+01 0.500000E+00 0 
3 0,28OOOOE+O2 0.142857E+OO 0~ 
4 0.725576Ec02 , 0.689107E-01 0 

0.744236E4l 0671830E+OO . 1 
5 0.146604Ei.03 0.409266E-01 0 

0.333961E+02 O.l79662E+OO I 
6 0.257 1948+03 0.272 168E-01 0 

0.840644Et02 0.8326958-01 I 

I 
n l/Gr Er - IOL 

0 874 ISSE+Ol 0 800773E+OO 2 
7 O?Il4?OE+O3 0191448E-01 0 

11 

12 

13 

14 

15 

0.166 223E+03 
0.3835648+02 
.0.6163868+03 
0.286 870E+03 
0.947 990E+02 

0.879 199Ec03 
0.453 076Ec03 
0.184 7218+03 
0.430 035Et02 

0.994 462E+O I 

0.120 697E+04 
0.671 9378+03 
0.3150698+03 
0.104 9498+03 
0,110 772Et.M 
0.1606808+04 
0.950 5548+03 
0.492 895E+03 
0.202 3368+03 
0.474 lIZE+OZ 
0.208582E+04 
0.129 604E+M 
0.725 28SE+03 
0.3420708+03 
0.1 146368+03 
0.121 551E+02 
0.265 llZEc04 
0.171 5498+04 
0.101934E+O4 
0.531 1888+03 
0.219232E+03 
0.516277E+OZ 
0.330981Et.04 
0.221 603Ec04 

0.7767748+03-~ 
0.368 074E+03 
0.123 9458+03 
0.131 8888+02 
0.406902E+04 
0.2804778+04 
0.1820888+.04 
0.108593EtM 
0.568 190E+03 
0.235 5288+03 

0.138217E+04 

0.5568688+02 

0.481 280L01 
0.208 570E+OO 
0.14601ZE-01 
0.313 73OE-01 
0.949 3778-01 
0.905 012EtOO 
0.1 137408-01 
0.220 7138-01 
0.541 3568-01 
0.232 539E+OO 
0.911 3758-02 
0.163706E-01 
0.349 130E-01 
0.104 813E+00 
0.993 032Ec00 
0.746 8248-02 
0.126 242E-01 
0.243460E-01 
0.593 073E-01 
0.253 105E+00 
0.623 2578-02 
0.100 306E-01 
0.179 240E-01 
0.380 039E-01 
0.1 l3402E+00 
0.106 951E+01 
0.528 0808-02 
0.816 09lE-02 
0.137343E-01 
0.263.560E-01 
0.638592E-01 ~~ 

0.271 172Ec00 
0.453 1988-02 
0.676 8858-02 
0.108525E-01 
0.193 IO6E-01 
0.407527E-01 
0.121 022E+00 
0.113733EtOl 
0.393 2158-02 
0.570 4578-02 
0.878 6968-02 
0.147 340E-01 
0.281 5968-01 
0.6793258-01 
0.287 321E+OO 

2 
3 '  
0 
1 
2 
3 
0 
1 
2 
3 , ,  
4 
0 
1 
2 
3 
4 
0 
1 
2 
3 
4 
5 
0 
1 
2 
3 
4 
5 
0 
1 
2 
3 
4 
5 
6 
0 
1 
2 
3 
4 
5 
6 - 
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where n, = 0,1,2,  . . . is the degree of excitation of the state. 
So far the following problem has been disregarded completely: for m = 0 the effective 

potential has a negative pole at r =~ 0 (see figure 4). This endangers our harmonic 
approximation. It turns out, however, that despite the pole the curves retain a local minimum 
if (3, c $& = 1.299, and that even for the worst case, for which an exact solution exists 
(n = 2, = 2, E, = I), the energy in the harmonic approximation &, = 0.892264 is not 
that bad. As an empirical result, it should be mentioned that better results for m = 0 are 
obtained by simply neglecting the centrifugal potential (second term in (23) and second 
bracket in (28)). Then we obtain E, = 1.028 29, which agrees pretty well with the exact 
value E~ = 1 in the worst case considered above. For m z 0, however, consideration of the 
centrifual term improves the agreement with the exact result considerably. 

3.3. Interpolation 

We are now looking for an interpolation formula which fulfills the high and small &,-limits 
(21) and (28) and which gives acceptable accuracy for intermediate &. We propose that 

0 1 2 3 
r/rO 

Figure 4. Effective potential V.E divided by the gmnnd-sate energy E, for m = 0 for three 
different 6, corresponding to the exact solutions for n = 2 (full line), 3 (broken line), and 10 
(dotted line). The corresponding values for 1 16, are 2.12. and 904.617. We dotted curve also 
goes to -m for I -, 0. but this branch of the curve is so close to the ordinate that it cannot be 
resolved from the axis.) The horizontal line is the eigenvalue e, for all three CUNG alike. 
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where f@,) = &,-imwL and fm and fo are the results given in (21) and (28), respectively. 
The maximum error of this formula for the available exact solutions is 6% for m = 0 and 
3% for m = 1. This result is important as an estimate of errors for a forthcoming calculation 
of the N-electron quantum dot, where this interpolation will be used. 
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